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Abstract 
 
A geometric approach for the outer-rotor profile as a conjugate to the inner-rotor in a hypotrochoidal rotor pump 

(hypogerotor pump) is proposed by means of the principle of the instantaneous center and the homogeneous coordinate 
transformation. The inner-rotor profile is defined by the combination of two circular arcs. Next, the radius of curvature 
of the outer-rotor is derived with the relationships of the trochoid ratio and the inner-rotor tooth size ratio. Then by 
examining the minimum radius of curvature of the extended hypotrochoidal outer-rotor profile on the convex section, 
an explicit formula to avoid undercutting in the hypogerotor pump is proposed. It is found that undercut or self-
intersection does not occur so long as the minimum value of the radius of curvature on the convex section is not less 
than zero. Design examples are presented to simulate the operation and to demonstrate the feasibility of the approaches 
using a computer-aided design program developed on C++ language.  
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1. Introduction 

Numerous applications in hydraulic and lubrication 
systems just require the circulation of the fluid. In 
such cases low noise emissions and little pressure 
ripples are more important than highly efficient 
transmission of energy. The gerotor pump is ideal 
principle for such applications. Compared to conven-
tional external gear pumps, the suction and pressure 
connection of the gerotor pump is axial to the driving 
shaft. This also supports the compact construction. 
Due to the solid tooth shape, the gerotor pump is re-
sistant to hydraulic and mechanical impact loads. The 
long durability of the gerotor pump is based on the 
relatively low sliding speed between the inner and the 
outer rotor. Furthermore, this pump is characterized 
by an extremely good smoothness and a low noise 

level. Designers of engines, compressors, machines 
tools, tractors, and other equipment requiring hydrau-
lic systems can now build pump components inte-
grally into these mechanisms. 

Some important literatures on the basic geometry 
and its related topics of the gerotor pump can be 
found: for example, Colbourne [1] proposed a geome-
try method to find the envelopes of trochoids that 
perform a planetary motion. Litvin ad Feng [2] used 
differential geometry to generate the conjugate sur-
faces of epitrochoidal gearing. Demenego et al. [3] 
developed a tooth contact analysis (TCA) computer 
program and discussed avoidance of tooth interfer-
ence and rapid wearing through modification of the 
rotor profile geometry of a cycloidal pump whose one 
pair of teeth is in mesh at every instant. Using the 
method for determining and tracing the limit curve, 
Mimmi and Pennacchi [4] obtained transcendental 
equations for the calculation of the limit dimensions 
to avoid undercutting. On the while, Ye et al. [5] pre-
sented simple explicit formulae by examining the 
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radius of curvature on the convex section for calculat-
ing the limit dimensions to avoid undercutting in the 
inner-rotor. 

However, most earlier studies focused on the 
commercially available gerotor pump using the equi-
distant shortened epitrochoid curve to the authors’ 
best knowledge. To improve the carryover phenome-
non of the traditional gerotor design, most recently 
Hwang and Hsieh [6] presented a geometry design 
procedure based upon the theories of envelope and 
conjugate surfaces for the hypotrochoidal gear pump 
(abbreviated as “hypogerotor pump” in this paper) 
using the equidistant extended hypotrochoid curve. 
They also presented non-undercutting conditions of 
the outer-rotor using the theory of gearing [7]. How-
ever, the procedure for obtaining the non-
undercutting conditions of [6] is somewhat compli-
cated with the added disadvantages that equations 
must be solved numerically. 

This paper presents the method on rotor profile de-
sign of a hypogerotor pump. The outer-rotor profile 
as a conjugate to the inner-rotor is defined by the 
principle of the instantaneous center and the homoge-
neous coordinate transformation in Section 2, and the 
inner-rotor profile is defined by the combination of 
two circular arcs in Section 3.  

Next, the radius of curvature of the outer-rotor is 
derived with the relationships of the trochoid ratio 
and the inner-rotor tooth size ratio in Section 4. Then 
by examining the minimum radius of curvature of the 
outer-rotor on the convex section following the meth-
odology of [5], an explicit formula for the limit di-
mensions to avoid self-intersecting or undercutting is 
proposed in Section 5. It is found that self-intersection 
does not occur so long as the minimum value of ra-
dius of curvature on the convex section is not less 
than zero. With the result obtained in this paper, the 
calculation becomes a much simpler task than that of 
[6].  

Based on developed analytical expressions, some 
discussions are addressed in Section 6 to demonstrate 
the feasibility of the approaches. 

 
2. Outer-rotor tooth profile 

A hypogerotor pump (see Fig. 1) consists of two main 
components: an inner-rotor and an outer-rotor that has 
one more tooth than the inner-rotor. The inner-rotor 
centerline is positioned at a fixed eccentricity from 
the centerline of the outer-rotor. As the rotors rotate in 
the same direction about their respective axes, fluid is  

 
 
Fig. 1. Typical hypogerotor pump. 
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Fig. 2. Instantaneous centers in a hypogerotor pump. 
 
drawn into the enlarging chamber up to a maximum 
volume. As rotation continues, the chamber volume 
decreases, forcing fluid out of the chamber. This 
process, used primarily in liquid transportation and 
many fluid power applications, occurs constantly for 
each chamber, providing a smooth pumping action.  

We have displayed a schematic of the hypogerotor 
pump in Fig. 2. The number of teeth of the inner-rotor 
is always one less than the outer-rotor, i.e., they have 
N  and ( )1N +  teeth, respectively. We can choose 
any shape for the inner-rotor teeth, and the outer-rotor 
is then generated conjugate to the inner-rotor. We 
describe here only the inner-rotor having N arcs of 
circle in the placement of R  from its center with the 
radius of rR . The center distance between rotors (or 
eccentricity) is E . It can be regarded kinematically 
as a mechanism of three-links and three-joints: the 
frame corresponding to 2 3E O O=  as Link 1, the 
outer-rotor as Link 2, and the inner-rotor as Link 3, 
respectively.  

The outer-rotor (Link 2) turns about 2O , and the 
inner-rotor (Link 3) turns about its center 3O , the 
angular velocity ratio being N :( )1N + . Two points 
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2O  and 3O  are permanent instantaneous centers 12I  
and 13I , respectively. We will denote the two pitch 
radii 2 2 23 2r O I O P= =  and 3 3 23 3r O I O P= =  
which are unknowns to be determined below. The 
magnitude of the velocity 23V  at pitch point 23I ( P ) 
can be determined by 

 
23 2 2 3 3V r rω ω= =  (1) 

 
The angular velocity ratio can be written as 
 

2 3

3 2 1
r N
r N

ω
ω

= =
+

 (2) 

 
From Eq. (2), we can easily determine the location of 
the pitch point 23I  with the aid of relation 

2 3r r E− =  and Kennedy’s theorem [8] as follows: 
 

( )2 1r E N= + , 3r EN=  (3) 

 
Before deriving the profile equation of the outer-

rotor, three coordinate systems corresponding to the 
hypogerotor pump should be defined as shown in Fig. 
3: one stationary reference system 2 fS  attached to 

2O , and two mobile reference systems 2S and 3S  
attached to 2O  and 3O , respectively. The angles of 

2φ  and 3φ  are profile definition parameters of the 
reference systems 2S  and 3S , respectively. 

In Fig. 3, the contact point is C  and the common 
normal to both rotors passes through the pitch point 

23I . Therefore, the mesh point 3C  in 3S -coordinate 
system and the corresponding leaning angle ψ  can 
be determined as below: 

 
3 cosC rx R R ψ= +  
3 sinC ry R ψ=  (4) 
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Fig. 3. Three coordinate systems for outer-rotor profile defi-
nition. 

1 3

3

sintan
cos
φψ

µ φ
−
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

 (5) 

 
where the parameter of 3/R rµ =  is used consis-
tently throughout this paper and is referred to as the 
trochoid ratio. It is recommended that the designer of 
the hypogerotor pump should adopt the curtate hy-
potrochoid curves (i.e. 1µ > ) to avoid self-
intersection phenomenon. 

The origin of coordinate system does not coincide 
with that of the outer-rotor in Eq. (4). In such a case 
the coordinate transformation may be used based on 
the application of homogeneous coordinates and 4×4 
matrices that describe separately rotation about a sta-
tionary axis and displacement of one coordinate sys-
tem with respect to the other [7]. For the homogene-
ous coordinate transformation from the contact point 
of 3C  in 3S -reference system to that of 2C  in 

2S -reference system, the following matrix equation is 
defined: 

 
( ) ( )2 3 3

3  C C Cφ φ= =2,3 2,2f 2 2f,3M M M  (6) 
 
where the matrix i, jM  describes transformation 
from jS -system to iS -system, and 
 

( )

2 2

2 2
2

cos sin 0 0
sin cos 0 0
0 0 1 0
0 0 0 1

φ φ
φ φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

2,2fM  (7) 

( )

3 3

3 3
3

cos sin 0
sin cos 0 0

0 0 1 0
0 0 0 1

Eφ φ
φ φ

φ

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

2f,3M  (8) 

[ ]3 cos sin 0 1 T
r rC R R Rψ ψ= +  (9) 

 
where the superscript T  in Eq. (9) means the trans-
pose of the matrix. 
The resulting expression of Eq. (6) is 
 

( ) ( )
( )

( ) ( )
( )

2 3

2 3 2

2 2 3

2 3 2

cos cos

sin sin cos

cos sin

sin cos sin

0
1

r

r

r

r

R R

R E

R RC
R E

ψ φ φ
ψ φ φ φ

ψ φ φ
ψ φ φ φ

⎡ ⎤+ −⎢ ⎥
⎢ ⎥+ − +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + −⎢ ⎥= ⎢ ⎥+ − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(10) 
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From Eq. (2), we have the following relation, 
 

2 2 2

3 3 3

/
/ 1

d dt N
d dt N

ω φ φ
ω φ φ

= = =
+  

(11) 

 
If we define φ  by the generated parameter of output 
motion, we can obtain 2 Nφ φ=  and ( )3 1Nφ φ= + . 
Substituting these relations into Eq. (10) leads to the 
following lobe profile parametric equations in 2S -
reference system: 
 

2 cos cos( ) cos( )C rx R R E Nφ φ ψ φ= + + +  (12a) 
2 sin sin( ) sin( )C ry R R E Nφ φ ψ φ= + + −  (12b) 

 
where 

 
1 sin( 1)tan

cos( 1)
N

N
φψ

µ φ
−
⎡ ⎤+⎢ ⎥= ⎢ ⎥− +⎣ ⎦

, ( 0 2φ π≤ ≤ ) (13) 

 
The real profiles are manufactured with techno-

logical gaps due to many practical considerations, 
such as precision of machining tools, prevention of 
jamming conditions, and application of lubricants. 
Although gear teeth gaps are inevitable, they may 
lead to fluid losses and occurrence of additional dy-
namic forces, decrease stability and increase noise 
and vibration, especially at high speeds. The require-
ment for a proper tip clearance is a trade-off problem. 
The equidistant curve principle is applied to realize 
the proper tolerances for the outer-rotor profile, and 
as a consequence, the offset profile to the ideal one of 
Eqs. (12) is obtained.  
This equidistant offset profile will be generated as 
equidistant of Eqs. (12) with equidistant radius larger 
or smaller than the theoretical one ( rR ) by a tip clear-
ance, tδ , as follows:  
 

( ) ( )2 cos cos( )
cos( )

C t r tx R R
E N

δ φ δ φ ψ
φ

= + + +
+  

(14a) 

( ) ( )2 sin sin( )
sin( )

C t r ty R R
E N

δ φ δ φ ψ
φ

= + + +
−  

(14b) 

 
These give a uniformly enlarged equidistant curve 
(Fig. 4) when 0tδ > . On the other hand, these give a 
uniformly contracted equidistant curve (Fig. 5) for 

0tδ < . Eqs. (14) are the equations of the profile on 
the non-ideal outer-rotor.  
We can observe that Eqs. (14) can be degenerated  
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Fig. 4. Equidistant offset outer-rotor lobe profile (dashed 
line). 
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Fig. 5. Outer-rotor shape in case of t rRδ =− . 
 
into the well-known standard hypotrochoid equations 
in the forms for the case when t rRδ =− (see Fig. 5): 
 

2 cos cos( )Cx R E Nφ φ= +  (15a) 
2 sin sin( )Cy R E Nφ φ= −  (15b) 

 
Next, we consider the outer-rotor rotated by the 
amount of 2θ (see Fig. 6) for the sake of generaliza-
tion. In that case, we can describe the outer-rotor pro-
file in the stationary 2 fS -reference system as fol-
lows: 

 
( )2 2

2
f C Cθ= 2f,2M  (16) 
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Fig. 6. Outer-rotor profile in case of rotation of 2θ . 
 
where  
 

( )

2 2

2 2
2

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

θ θ
θ θ

θ

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

2f,2M  (17) 

( ) ( ) ( )
( ) ( ) ( )2

cos cos cos
sin sin sin

0
1

r t

r t

R R E N
R R E N

C

φ δ φ ψ φ
φ δ φ ψ φ

⎡ ⎤+ + + +⎢ ⎥
⎢ ⎥+ + + −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

  

 (18) 
 
The outer-rotor profile in 2 fS -reference system be-
comes 
 

( ) ( )2
2 2

2

cos cos( )
cos( )

f
C r tx R R

E N
φ θ δ φ ψ θ

φ θ
= + + + + +

+ −
 (19a) 

( ) ( )2
2 2

2

sin sin( )
sin( )

f
C r ty R R

E N
φ θ δ φ ψ θ

φ θ
= + + + + +
− −

 (19b) 

 
3. Inner-rotor tooth profile and flow rate 

The inner-rotor (see Figs. 7 and 8) can be defined 
by the combination of two circular arcs: inner-rotor 
teeth circular arcs of Section I ( i iα β≤Φ≤  and 

1i iγ α +≤Φ≤ ), and fillet circular arcs of Section II 
( i iβ γ≤Φ≤ ). The position angles shown in Fig. 7 
are 

 

( ) ( )3 3

2, 1i iX O N i
N
πα =∠ = − ,( )1,2,3, ,i N=    

 (20a) 

O3
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Fig. 7. Definition of inner-rotor parameters. 
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Fig. 8. Schematic for determination of fl .

  
( )3 3,i i iX O tβ α δ=∠ = +  (20b) 

( )3 3 1 1,i i iX O tγ α δ+ +=∠ = −  (20c) 

 
Here the section discrimination angle δ  can be de-
termined from 3 1 1i iO t N+ +∆  of Fig. 7 as 
 

2 2 2
1cos

2
rt R R

tR
δ −

⎛ ⎞+ − ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (21) 

 
where 
 

2 2 2 cosf f f ft l R l R τ= + −  (22a) 

( )
( )

22 2

cos
2

f r f

f r f

l R R R

l R R
τ

+ + −
=

+
 (22b) 

( ) ( )
3

22 2

cos

cos

f i

r f

l O B R

R R R R

= = Ω

+ Ω − + +
 

(22c) 
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and ( )1 / 2 /i i Nα α π+Ω= − = . 
Eq. (22a) is obtained by 3 i iO B t∆ , Eq. (22b) by 

3 i iO N B∆ , and Eq. (22c) by 3 1i iO N B+∆  or 3 i iO N B∆  
of Fig. 8, respectively. 
The circular arc equations of Section I (Fig. 9) and 
Section II (Fig. 10) in the stationary 3 fS -reference 
system can be written, respectively, as follows: 
 

( )( )
( )( )

23
3

23 2
3

cos

sin

f
D i

f
D i r

x R

y R R

α θ

α θ

− +

+ − + =
 (23a) 

( )( )
( )( )

23
3

23 2
3

cos

sin

f
D f i

f
D f i f

x l

y l R

α θ

α θ

− +Ω+

+ − +Ω+ =
 (23b) 

 
where the angle 3θ  represents the rotation angle of 
the inner-rotor. The relation between the rotation 
angles of the rotors is 2 3/ /( 1)N Nθ θ = + . 
The 3 fS -coordinates of point D  in Figs. 9 and 10 
are  
 

( ) ( )3
3cosf

Dx r θ= Φ Φ+  (24a) 

( ) ( )3
3sinf

Dy r θ= Φ Φ+  (24b) 
 
where 

 

( ) ( )
( )

3
1

3 3 33, tan
f

C
f

C

y
X O C

x
φ

θ
φ

−
⎛ ⎞⎟⎜ ⎟⎜Φ =∠ = −⎟⎜ ⎟⎟⎜⎝ ⎠

 (25a) 

3 2f f
C Cx x E= − , 3 2f f

C Cy y=  (25b) 
 
Here we defined the position angle Φ  as Eq. (25a) 
(see Fig. 11) in order to calculate the chamber area 
easily. It allows the same position data between rotors.  
Substituting Eqs. (24) into Eqs. (23), we find 

  
( ) ( )

( )
( )

2 2 2 2

cos

cos ,

i

r i

i i

r R

R R R

α

α

α β

Φ = Φ−

+ − + Φ−

≤Φ≤  

(26a) 

( ) ( )( )
( )( )

( )

3

2 2 2 2
3

cos

         cos , 

f i

f f f i

i i

r l

R l l

α θ

α θ

β γ

Φ = Φ− +Ω+

− − + Φ− +Ω+

≤Φ≤

  

 (26b) 
( ) ( )

( )
( )

1

2 2 2 2
1

1

cos

cos ,

i

r i

i i

r R

R R R

α

α

γ α

+

+

+

Φ = Φ−

+ − + Φ−

≤Φ≤

 (26c) 
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Fig. 9. Section I of inner-rotor tooth profile in 3 fS -system. 
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Fig. 10. Section II of inner-rotor tooth profile in 3 fS -system. 
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Fig. 11. Definition of generated parameter Φ . 

 
Once the generated shape and conjugate shape are 

known, the volume displaced by the working pocket, 
as this pocket goes through a complete cycle from 
maximum volume ( maxA H× ) to minimum volume 
( minA H× ), can be determined. Here maxA , minA  and 
H  represent the maximum chamber area, the mini-
mum chamber area and the rotor thickness, respec-
tively. 
For this goal, the evaluation procedure of the i -th 
chamber area, iA , at any instant should be preceded.  
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It can be carried out from Fig. 12 numerically as fol-
lows: 
 

( ) ( )
0

2 2 2 2

1

1 1
2 2

ni

i

n

i k k k k k
k

A C D d C D
Φ

Φ =

= − Φ≈ − ∆Φ∑∫  (27) 

 
where 

 
( ) ( )2 3 2 3 2f f

k C ki C kiC x yφ φ= +   (28a) 

( ) ( )2 3 2 3 2f f
k D ki D kiD x y= Φ + Φ   (28b) 

( )1k ki k i−∆Φ =Φ −Φ  (28c) 

 
and 0iΦ  and niΦ  are the start and the end position 
angles of the i -th chamber, respectively. These an-
gles are calculated from the schematic of Fig. 13 for 
determination of contact angle ( )c iθ ,  
 

( ) ( )
( )

1
0 3tan c

i c
c

Y i
i

X i
θ θ−

⎛ ⎞⎟⎜ ⎟⎜Φ = = −⎟⎜ ⎟⎟⎜⎝ ⎠  
(29a)

 

( ) ( )
( )

1
3

1
1 tan

1
c

ni c
c

Y i
i

X i
θ θ−

⎛ ⎞+ ⎟⎜ ⎟⎜Φ = + = −⎟⎜ ⎟⎟⎜ +⎝ ⎠  
(29b) 
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Fig. 12. Schematic for chamber area. 
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Fig. 13. Schematic for determination of contact angle, cθ . 

where  
 

( ) * 3cos 1 r r
c i

i i

R r RX i R
m m

α
⎛ ⎞⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜⎝ ⎠  

(30a) 

( ) *sin 1 r
c i

i

RY i R
m

α
⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (30b) 

2 *
23 3 1 2 cosi i im I N r µ µ α= = + −  (30c) 

 
and *

3i iα α θ= + . 
To determine the working area of max minA A A∆ = −  
with the aid of Eq. (27), it should be noted that both 

maxA  and minA  occur simultaneously at 
( )3 2 1 /j Nθ π= −  (where 1,2, ,j N= ) for the 

case when N  is even number, while maxA  at 
( )3 2 1 /j Nθ π= −  and minA  at ( )3 2 1 /j Nθ π= − , 

respectively, for the case when N  is odd number. 
Since maxA  or minA  occur N  times for every rota-
tional turn of the inner-rotor, the specific flow rate 

thV  (or theoretical displacement per unit revolution) 
can be determined as thV A H N= ∆ × × .  
Therefore, the oil flow rate of the hypogerotor pump 
is calculated as 
 

V thq V rpmη= × ×  (31) 
 
where Vη  is the volumetric efficiency mainly de-
pending on tip clearance and face clearance, and 
( rpm ) is the rotational speed of the inner-rotor. 
 
4. Radius of curvature for outer-rotor 

During the design stage of the hypogerotor pump, 
the size ( rR  ) and the placement ( R ) of the cylindri-
cal inner-rotor teeth are those of important dimen-
sions. If rR  is larger than a maximum value or R  
is less than a minimum value, then the enveloped 
tooth profile of the outer rotor will self-intersect (see 
Fig. 14). The tooth profile of the outer-rotor will 
therefore be undercut. This will produce backlash 
between rotors during running and become a potential 
problem, e.g., a decrease in volumetric efficiency. It 
is therefore important to calculate limit dimensions to 
avoid undercutting on the outer-rotor when designing 
the geotor pump. It is also well known that the wear 
rate can be reduced by increasing the radius of curva-
ture of the lobes. The radius of curvature is a function 
of the size and the placement of the inner-rotor teeth 
which generate the lobe shape.  
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As is well known, the formula for the radius of 
curvature of a parametric curve is 

 

( ) ( )
3

2 2 2x y

x y x y
ρ

⎡ ⎤′ ′+⎢ ⎥⎣ ⎦=
′′ ′ ′ ′′−  

(32) 

 
where ( x , y ) are coordinates of the parametric 
curve, ( x′ , y′ ) and ( x′′ , y′′ ) are the first and the 
second derivatives of ( x , y ) with respect to pa-
rameter, respectively. If 0ρ>  in Eq. (32), then the 
location of the center of curvature is to the right of the 
path (i.e., convex profile). 
If the mesh points of 2C  in Eqs. (12) are differenti-
ated with respect to φ , then the resulting formula for 
the radius of curvature of the tooth profile of the 
outer-rotor will be very complicated because of the 
term of ψ . It will be impossible to obtain directly an 
explicit formula. However, it will be overcome with 
the introduction of the radius of curvature for the 
standard hypotrochoid curve (see Fig. 5). When 

t rRδ =−  in Eqs. (14), we can obtain the standard 
hypotrochoid curve as in Eqs. (15). With the radius of 
curvature 

iNρ  of the standard hypotrochoid curve, 
the radius of curvature of the outer-rotor path (ex-
tended hypotrochoid curve) traced by the mesh point 
2C , at a specified input position φ , can be found as 
 

iN rRρ ρ= −  (33) 
 
To find 

iNρ , we consider Eqs. (14) and (15), i.e., 
2 ( )C t rx x Rδ= =−  and 2 ( )C t ry y Rδ= =− . 

Substituting Eqs. (15) into Eq. (32) yields a simpler 
formula with parameter of ( )3 1Nφ φ= +  as follows: 

 

( )3/ 22
3 3

2
3

1 2 cos
( 1)cos r

r
R

N N
µ µ φ

ρ
µ µ φ

+ −
= −

− − −  
(34a) 

 
or in the normalized form of radius of curvature 

 ( )3/ 22
3

2
3

1 2 cos
( 1)cosR N N

µ µ φρρ λ
µ µ µ φ

∗
+ −

= = −⎡ ⎤− − −⎣ ⎦  
(34b) 

 
where /rR Rλ =  is the inner-rotor tooth size ratio. 

The transition between concave and convex por-
tions results in the radius of curvature becoming infi-
nite. This inflection point will occur in the hypotro-
choidal path when the denominator in Eqs. (34) tends 

to zero: 
 

( )2
31 cos 0N Nµ µ φ− − − =  (35a) 

 
or 

 
( )

2

3cos
1

N
N

µφ
µ

−=
−  

(35b) 

 
Since N  and µ  are positive and real values, then 

3cos 0φ > , i.e., 30 / 2φ π≤ ≤ . Therefore, an inflec-
tion point will occur when 
 

( )
2

0 1
1

N
N

µ
µ

−< ≤
−  

(36) 

 
5. Non-undercut condition for outer-rotor 

To demonstrate the interference (or self-
intersecting) phenomenon, two outer-rotors are de-
picted simultaneously in Fig. 14. The same design 
parameters ( R =32, N =8, E =3.5) have been used 
in Fig. 14, with the exception of rR  (equal to 4 in 
the smaller rotor and 20 in the larger rotor). Shown in 
Fig. 15 is the relationship between radius of curvature 
ρ  of the tooth profile and the generated parameter 

3φ . From Fig. 15, we can observe that the radius rR  
of the inner-rotor tooth increases, then ρ  decreases. 
If rR  is larger than a limit value, the minimum ra-
dius of curvature on the convex section will be nega-
tive and the tooth profile of the outer-rotor will be 
intersecting. This will produce backlash between the 
outer-rotor and inner-rotor during running. To avoid 
this self-intersecting, the point with zero radius of 
curvature must be avoided, i.e., the minimum value of 
ρ  of the tooth profile on the convex section should 
not be less than zero.  
 

undercut
Rr=20

Rr=4

R=32, N=8, E=3.5

 
 
Fig. 14. Outer-rotor profile design example for showing 
undercut. 
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Fig. 15. Radius of curvature for the design example. 
 

In order to calculate minρ  on the convex section, 
Eqs. (34) are differentiated with respect to 3φ  and 
setting the result equal to zero. After rearranging, the 
equation is observed to be of the form  

 
0A B C× × =  (37) 

 
where  

 
3sinA φ=  (38a) 

2
31 2 cosB µ µ φ= + −  (38b) 

( ) ( )2
32 1 2 1 cosC N N Nµ µ φ= + − + − −  (38c) 

 
It is clear from Eq. (37) that there are three distinct 
cases where stationary curvature in the hypotrochoi-
dal path could occur: when 0A = , and/or 0B = , 
and/or 0C = . As it is important to understand each 
case, they are presented now in some detail. 
 
(Case 1). Consider 0A = ; i.e., 3sin 0φ = . 
The values of the generated parameter which satisfy 
this condition are 3 0φ =  or 3φ π= . Substituting 

3 0φ =  and 3φ π=  into Eq. (34a) and simplifying, 
the first and the second local extrema are 
 

( )
3

2
3

1 0

1
r

r
R

Nφ

µ
ρ ρ

µ=

−
= =− −

+  
(39) 

( )
3

2
3

2

1
r

r
R

Nφ π

µ
ρ ρ

µ=

+
= = −

−  
(40) 

 
These first and second local extrema are the radius of 
curvature of the initial generated point at the bottom 
of the lobe for internal contact and the radius of cur-

vature occurring at the top of the lobe for internal 
contact, respectively.  
 
(Case 2). Consider 0B = ; i.e., Eq. (38b) may be 
written as 
 

2
31 2 cos 0µ µ φ+ − =  (41) 

 
For Eq. (41) to be a possible solution, the relationship 
between the trochoid ratio and the generating angle is 
 

2
3 3cos cos 1µ φ φ= ± −  (42) 

 
Since 0µ > , then the only value of 3φ  which sat-
isfy this condition is 3 0φ = . Substituting this value 
into Eq. (42) gives 1µ = . Then substituting 1µ =  
into Eq. (39), we see that the first local extremum 

( )1 0
iN rRρ ρ= = − . This defines a cusp in the path of 

point iN  and is a special case which may not be a 
practical solution. 
 
(Case 3). Consider 0C = ; i.e., Eq. (38c) may be 
written as 
 

( ) ( )2
32 1 2 1 cos 0N N Nµ µ φ+ − + − − =  (43a) 

 
or 

 ( )
( )

2

3

2 1 2
cos

1
N N

N
µ

φ
µ

+ − +
=

−  
(43b) 

 
As 3cos 1φ ≤ , the third local extremum occurs 
when the trochoid ratio is 

 2 11
2

N
N

µ +< <
+  

(44) 

 
This equation is the most general result for the tro-
choid ratio of a practical hypotrochoidal gerotor.  
Substituting Eq. (43b) into Eqs. (34) and simplifying, 
the third local extremum is 
 

( )( )
3/ 2

2
3 3

3 1 1
1 rr N R

N
ρ µ

⎛ ⎞⎟⎜= − + −⎟⎜ ⎟⎟⎜⎝ ⎠−  
(45a) 

 
or 
 

( )( )
3/ 2

* 2
3

1 3 1 1
1

N
N

ρ µ λ
µ
⎛ ⎞⎟⎜= − + −⎟⎜ ⎟⎟⎜⎝ ⎠−  

(45b) 
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If the trochoid ratio satisfies Eq. (44) then all three 
local extrema will occur on the path. However, if the 
trochoid ratio ( ) ( )2 1 / 2N Nµ ≥ + + , then only the 
first and second local extrema can occur on the path. 

As stated before, to avoid self-intersecting, the val-
ue of minρ  on the convex section should not be less 
than zero. Setting 3 0ρ =  results in an explicit for-
mula for calculating the maximum value of maxλ  of 
the inner-rotor tooth size ratio to avoid undercutting 
on the outer-rotor 

 
( ) ( )( )

3/ 2
2max

max

1 3 1 1
1

rR
N

R N
λ µ

µ
⎛ ⎞⎟⎜= = − +⎟⎜ ⎟⎟⎜⎝ ⎠−  (46) 

 
If rR  has been determined beforehand, then the 
minimum distance minR  can be calculated by the 
following explicit formula derived from Eq. (46): 
 

( )
( )

32
2

min 3

1
27 1

rR N
R r

N
−

= +
+  

(47) 

 
Using Eqs. (46) and (47) it is very easy to calculate 
limit dimensions. For an example, if the design pa-
rameters are given by R =32, N =8, and E =3.5 as 
in Figs. 14 and 15, the maximum inner-rotor tooth 
radius to avoid undercutting is ( )maxrR =13.04. 

 
6. Discussion 

Based on the obtained results, a computer-aided 
package “HypoGerotor V2.0” has been developed to 
design the hypogerotor pump using C++ language in 
connection with OpenGL. This CAD program has the 
characteristics of the graphic user interface and the 
simulation of the real operation for the hypogerotor 
pump.  

To validate of the proposed approach, we revisit 
the existing result of Hwang and Hsieh [6]. They 
presented two special cases as in Table 1.  
These two cases have no undercutting on the profiles, 
causing the design values of rR  to be lower than 
their ( )maxrR  values. As can be shown in Fig. 16, our 
results are in exact agreement with those of [6].  

According to the result of Saenko and Gorbatyuk 
[9], the theoretical displacement of the epitrochoidal 
gerotor pump is approximately evaluated as 

( )4th rV E R R Hπ≈ − . In other words, thV  increases 
in that pump with the increase of R  and E , but 
decreases with the increase of rR . However, it  

Table 1. Design parameters for comparison. 
 

 Parameters given in [6] Design constraint 

Case 1 N=4, R=30, E=6.9, Rr=4.2 (Rr)max=26.29
 

Case 2 N=6, R=20, E=3.0, Rr=3.0 (Rr)max =10.72
 

 
 

 
(a) Case 1 

 

 
(b) Case 2 

 
Fig. 16. Comparison with the existing result [6]. 

 
should be noted that the theoretical displacement thV  
of the hypogerotor increases as increasing of R , E  
and rR . This trend is somewhat different from that 
of the epitrochoidal gerotor pump. 
The trochoid ratio µ  for all commercially available 
hypogerotor pump will have a value that satisfies Eq. 
(44); i.e. the local extremum given by Eqs. (45) is the 
most common minimum radius of curvature on the 
convex section of the tooth profile. For an illustrative 
purpose, the maximum inner-rotor tooth size ratio of 
Eq. (46) is graphically represented in Fig. 17 with the 
variation of the trochoid ratio under the limit condi-
tion of Eq. (44). From Fig. 17, we can observe that (a) 
permissible maxλ  increases as µ  increases; (b) 
permissible maxλ  decreases with the increase of N ; 
and (c) the range of µ  for practical purpose is get-
ting wider as N  increases because of the limit con-
dition of Eq. (44).  
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Fig. 17. Maximum tooth size ratio with the variation of tro-
choid ratio. 

 
Besides, in the hypogerotor pump design, to avoid 
contact with or interference between the two neighbor 
inner-rotor teeth or existence of the fillet radius of 
( )

minfR , the maximum permissible value of the inner-

rotor tooth size ratio is denoted as cλ  and the inner-
rotor tooth radius or the inner-rotor tooth size ratio 
may be constrained by the following relation (see Fig. 
8): 
 

0 sinrR R< < Ω  (48a) 
0 sincλ λ< < = Ω  (48b) 

 
However, because Eqs. (48) only determine the de-
sign range of the inner-rotor tooth size, Eq. (46) (the 
equation of undercutting) must be employed to the 
feasible design. 

 
7. Conclusions 

The exact outer-rotor profile and some explicit 
formulae for the limit dimensions to avoid undercut-
ting in the hypogerotor pump have been obtained by 
the principle of the instantaneous center, and by ex-
amining the minimum radius of curvature on the con-
vex section of the lobe profile, respectively. The fol-
lowing conclusions can be drawn: 

 
(1) The parametric lobe profile equations of the outer-

rotor in a hypogerotor pump are analyzed and ob-
tained by the principle of the instantaneous center.  

The present results are easy to understand and ex-
act. 

(2) Simple explicit formulae for no interference con-
ditions are presented by examining the minimum 
radius of curvature on the convex section of the 
outer-rotor profile. 

(3) The developed design methodology has been suc-
cessfully applied to the hypogerotor pump using a 
computer-aided program, and some examples 
have been presented to verify the validity of the 
developed methodology. 
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